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On the coherent states for theq-Hermite polynomials and
related Fourier transformation
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‡ Department of Mathematics, Southern Illinois University, Carbondale, IL 62901, USA
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Abstract. We discuss the Fourier–Gauss transformation properties of the continuousq-Hermite
polynomials and associatedq-coherent states.

One realization of theq-harmonic oscillator [1, 2] can be built on the finite interval
x ∈ [−1, 1] in terms of the continuousq-Hermite polynomialsHn(x|q) with the parameter
q ∈ (0, 1) [3]. The factorization of the difference equation forHn(x|q) yields explicit
loweringb(x|q) and raisingb+(x|q) operators, which satisfy theq-Heisenberg commutation
relation [4]. As in the case of the well known non-relativistic quantum-mechanical oscillator,
one can also construct coherent states for thisq-deformed system. They are defined as
eigenfunctions of the lowering operatorb(x|q) and involve the infinite series of the form
[4]

I (x, t; q) =
∞∑

n=0

qn2/4tn

(q; q)n
Hn(x|q) (1)

where(a; q)0 = 1 and(a; q)n = ∏n−1
j=0(1− aqj ), n = 1, 2, 3, . . . , is theq-shifted factorial.

In the limit case when the parameterq ≡ exp(−2κ2) tends to 1 (and, consequently,κ → 0),
we have

lim
q→1−

κ−nHn(sinκs|q) = Hn(s) (2)

whereHn(s) are the classical Hermite polynomials. Therefore

lim
q→1−

I (sinκs, 2κτ ; q) =
∞∑

n=0

τn

n!
Hn(s) = e2sτ−τ 2

(3)

and we recover the coherent states for the non-relativistic linear oscillator, according to the
generating function in (3). Observe also that a summand in the Rogers generating function
for the continuousq-Hermite polynomials [5]

∞∑
n=0

tn

(q; q)n
Hn(cosθ |q) = eq(te

iθ )eq(te
−iθ ) |t | < 1 (4)
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falls short by the factorqn2/4 in order to expressI (x, t; q) in terms of theq-exponential
function

eq(z) :=
∞∑

n=0

zn

(q; q)n
= (z; q)−1

∞ . (5)

Actually, as suggested in [6] (see also [7, 8]), series (1) can be used to define yet another
q-exponential functionεq(x; τ) (see (27) below), which differs from (5) and its reciprocal

Eq(z) :=
∞∑

n=0

zn

(q; q)n
qn(n−1)/2 = (−z; q)∞. (5′)

The advantage of the alternateq-exponential functionεq(x; τ) is that it represents an
eigenfunction of the Askey–Wilson divided difference operatorDq . The standardq-
analogues of the exponential functioneq(z) andEq(z) do not possess this property.

The functionεq(x; τ) is also expressible as a sum of two2φ1 basic hypergeometric
series (cf [6]). This sum will be evaluated by the aid ofq-analogues of the well known
representations

H2n(x) = (−4)nn!L
(− 1

2 )
n (x2) = (−4)n( 1

2)n 1F1(−n; 1
2; x2) (6a)

H2n+1(x) = (−4)nn!2xL
( 1

2 )
n (x2) = (−4)n( 3

2)n2x 1F1(−n; 3
2; x2) (6b)

for the Hermite polynomialsHn(x) in terms of the Laguerre polynomialsL(α)
n (z) and the

confluent hypergeometric function1F1(a; b; z).
We start with the observation that theq-Hermite polynomialsHn(x|q) are a particular

case of the continuousq-ultraspherical polynomials of RogersCn(x; β|q) with vanishing
parameterβ, that is

Hn(x|q) = (q; q)n Cn(x; 0|q). (7)

On the other hand, the polynomialsCn(x; β|q) are related to the continuousq-Jacobi
polynomials

P (α,β)
n (x; q) = (qα+1, −qβ+1; q)n

(q2; q2)n
4φ3

(
q−n, qn+α+β+1, q

1
2 eiθ , q

1
2 e−iθ

qα+1, −qβ+1, −q

∣∣∣∣q; q

)
(8)

by the quadratic transformations

C2n(x; qλ|q) = (qλ, −q; q)n

(q; q2)n
q−n/2P

(λ− 1
2 ,− 1

2 )
n (2x2 − 1; q) (9a)

C2n+1(x; qλ|q) = (qλ, −1; q)n+1

(q; q2)n+1
q−n/2xP

(λ− 1
2 , 1

2 )
n (2x2 − 1; q) (9b)

in the variablex = cosθ (see [9], formulae (7.5.35) and (7.5.36)). The basic hypergeometric
series4φ3 in (8) is a particular case of the definition

n+1φn(a1, . . . , an+1; b1, . . . bn; q, z) =
∞∑

k=0

(a1, . . . an+1; q)k

b1, . . . , bn, q; q)k
zk (10)

with n = 3 and(a1, . . . , an; q)k = ∏n
j=1(aj ; q)k is the product ofq-shifted factorials. Since

lim
q→1−

Cn(x; qλ|q) = Cλ
n(x) lim

q→1−
P (α,β)

n (x; q) = P (α,β)
n (x) (11)

the quadratic transformations (9) areq-analogues of the relations

Cλ
2n(x) = (λ)n

( 1
2)n

P
(λ− 1

2 ,− 1
2 )

n (2x2 − 1) Cλ
2n+1(x) = (λ)n+1

( 1
2)n+1

xP
(λ− 1

2 , 1
2 )

n (2x2 − 1) (12)
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between the ultraspherical polynomials of GegenbauerCλ
n(x) and the Jacobi polynomials

P
(α,β)
n (x).

Now we can use formulae (8) and(9a) in order to expressC2n(x; qλ|q) in terms of
the basic hypergeometric series4φ3. The subsequent passage to the limitλ → ∞ will give
the desired representation forH2n(x|q). Observe that explicit dependence on the variable
x = cosθ enters theq-Jacobi polynomials via theq-shifted factorials

(q
1
2 eiθ , q

1
2 e−iθ ; q)k =

k−1∏
j=0

(1 + q2j+1 − 2xqj+ 1
2 ) k = 1, 2, 3, . . . . (13)

Therefore the substitutionθ → 2θ in the relation (8) leads to polynomials with respect
to the variable cos 2θ = 2 cos2 θ − 1 = 2x2 − 1. The polynomialsP α,β)

n (2x2 − 1; q) are
thus expressed in terms of the hypergeometric series by the same formula (8), but withθ

replaced by 2θ .
From (7), (8) and(9a) follows

H2n(x|q) = (−q
1
2 , q

1
2 )2nq

−n/2
3φ2

(
q−n, q

1
2 e2iθ , q

1
2 e−2iθ

−q, −q
1
2

∣∣∣∣q; q

)
. (14)

The transformation of a terminating series

3φ2

(
q−n, b, c

d, e

∣∣∣∣q; q

)
= (de/bc; q)n

(e; q)n

(
bc

d

)n

3φ2

(
q−n, d/b, d/c

d, de/bc

∣∣∣∣q; q

)
(15)

enables (14) to be rewritten as

H2n(x|q) = (−1)n(q; q2)n 3φ2

(
q−n, −e2iθ , −e−2iθ

q1/2, −q1/2

∣∣∣∣q; q

)
. (16)

It remains to apply Singh’s quadratic transformation for a terminating3φ2 series

3φ2

(
a2, b2, c

abq
1
2 , −abq

1
2

∣∣∣∣q; q

)
= 3φ2

(
a2, b2, c2

a2b2q, 0

∣∣∣∣q2; q2

)
(17)

from baseq to baseq2. This gives (cf [10])

H2n(x|q) = (−1)n(q; q2)n 3φ2

(
q−2n, −e2iθ , −e−2iθ

q, 0

∣∣∣∣q2; q2

)
. (18)

In a like manner,

H2n+1(x|q) = (−q)−n(q3; q2)n2x 3φ2

(
q−2n, −qe2iθ , −qe−2iθ

q3, 0

∣∣∣∣q2; q2

)
. (19)

Now we are in a position to express (1) as a sum of two2φ1’s. Indeed, separating odd
and even powers oft , we find

I (x, t; q) =
∞∑

n=0

qn2
t2n

(q; q)2n

H2n(x|q) + q
1
4

∞∑
n=0

qn(n+1)t2n+1

(q; q)2n+1
H2n+1(x|q). (20)

Next substituting (18) into the first sum in (20) and taking into account that(q; q)2n =
(q, q2; q2)n, defines

I1(sinγ, t; q) =
∞∑

n=0

qn2
t2n

(q; q)2n

H2n(sinγ |q)

=
∞∑

n=0

qn2
(−t2)n

(q2; q2)n

n∑
k=0

(q−2n, e2iγ , e−2iγ ; q)k

(q, q2; q2)k
q2k. (21)
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Note that in (21) and all subsequent formulae we consider the parametrizationx = sinγ ,
γ = 1

2π − θ to be more convenient thanx = cosθ (cf formulae (2) and (3) above).
Interchanging the order of summation in (21), the relation (easily verified by induction)

(q−2(n+k); q2)k

(q2; q2)n+k

= (−1)k

(q2; q2)n
q−2nk−k(k+1) (22)

gives

I1(sinγ, t; q) =
∞∑

k=0

(e2iγ , e−2iγ ; q2)k

(q, q2; q2)k
(qt2)k

∞∑
n=0

qn2
(−t2)n

(q2; q2)n
. (23)

The sum overn does not depend on the variablex = sinγ and is readily recognized as the
q-exponential function(5′). The sum overk yields a2φ1 basic hypergeometric series (see
(10)). Thus

I1(sinγ, t; q) = Eq2(−t2) 2φ1(qe2iγ , qe−2iγ ; q; q2, t2). (24)

Similarly, substituting (19) into the second term in (20), we obtain

I2(sinγ, t; q) = 2q
1
4 t

1 − q
Eq2(−t2) sinγ 2φ1(q

2e2iγ , q2e−2iγ ; q3; q2, t2). (25)

The sum of (24) and (25) yields the following expression for (1) in terms of the2φ1

functions:

I (sinγ, t; q) = Eq2(−t2)

{
2φ1(qe2iγ , qe−2iγ ; q; q2, t2)

+ 2q
1
4 t

1 − q
sinγ 2φ1(q

2e2iγ , q2e−2iγ ; q3; q2, t2)

}
. (26)

If one thus defines theq-exponential functionεq(x; τ) (see [6]) via

∞∑
n=0

qn2/4tn

(q; q)n
Hn(x|q) = Eq2(−t2)εq(x; −it) (27)

then from (1) and (26) follows

εq(sinγ ; τ) = 2φ1(qe2iγ , qe−2iγ ; q; q2, −τ 2)

+2iq
1
4 τ

1 − q
sinγ 2φ1(q

2e2iγ , q2e−2iγ ; q3; q2, −τ 2). (28)

Another form of theεq(sinγ ; τ)-function, equivalent to (28), is

εq(sinγ ; τ) =
∞∑

n=0

τn

(q; q)n
qn2/4(q(1−n)/2e−iγ , −q(1−n)/2eiγ ; q)n. (29)

By definition (27), the functionεq(x; τ) satisfies the difference equation (cf difference
equations (4.5.1.3) and (4.5.2.2) in [11] for theq-exponential functionseq(x) and Eq(x),
respectively)

sinκ∂x εq(sinκx; τ) = iq− 1
4 τ cosκx εq(sinκx; τ). (30)

This can be readily verified by applying the operator sinκ∂x to both sides of (27) and using
the fact that it acts as the lowering operator on the continuousq-Hermite polynomials, that
is

sinκ∂x Hn(sinκx|q) = (q−n/2 − qn/2) cosκx Hn−1(sinκx|q). (31)
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It turns out that the functionεq(x; τ) can be expressed as a Fourier–Gauss transform of the
product of twoq-exponential functions(5′). Indeed, the continuousq-HermiteHn(x|q) and
q−1-Hermite hn(x|q) polynomials are known to be related to each other by the Fourier–
Gauss transform [12]

Hn(sinκx|q)e−x2/2 = in√
2π

qn2/4
∫ ∞

−∞
hn(sinhκy)e−ixy−y2/2 dy. (32)

Substituting (32) into the left-hand side of (27) and summing overn by the aid of the
generating function [13, 14]

∞∑
n=0

tnqn(n−1)/2

(q; q)n
hn(sinhκx|q) = Eq(te

κx)Eq(−te−κx) (33)

for the q−1-Hermite polynomialshn(x|q), one obtains

εq(sinκx; τ)Eq2(τ 2)e−x2/2 = 1√
2π

∫ ∞

−∞
e−ixy−y2/2Eq(τq

1
2 e−κy)Eq(−τq

1
2 eκy) dy. (34)

It is interesting to compare (34) with Ramanujan’s integral [15–17]

1√
2π

∫ ∞

−∞
Eq(aq

1
2 e

√
2κy)Eq(bq

1
2 e−√

2κy)e−ixy−y2/2 dy

= Eq(−ab)eq(ae−i
√

2κx)eq(bei
√

2κy)e−x2/2. (35)

In (34), equating parts symmetric and antisymmetric (respectively) with respect to the
parameterτ yields the integral representations

2φ1(qe2iκx, qe−2iκx; q; q2, −τ 2)Eq2(τ 2)e−x2/2

= 1√
2π

∫ ∞

−∞
Eq(τq

1
2 e−κy)Eq(−τq

1
2 eκy)e−y2/2 cosxy dy (36a)

τ sinκx 2φ1(q
2e2iκx, q2e−2iκx; q3; q2, −τ 2)Eq2(τ 2)e−x2/2

= 1 − q

2
√

2π
q− 1

4

∫ ∞

−∞
Eq(τq

1
2 eκy)Eq(−τq

1
2 e−κy)e−y2/2 sinxy dy (36b)

for the non-terminating basic hypergeometric series2φ1 under consideration.
Combining the Ramanujan-type orthogonality relation for the continuousq-Hermite

polynomials [12]∫ ∞

−∞
Hm(sinκx|q)Hn(sinκx|q)e−x2

cosκx dx = √
πq

1
8 (q; q)mδmn (37)

with the definition (27) of theq-exponential functionεq(x; t), yields the following two
integrals∫ ∞

−∞
Hm(sinκx|q)εq(sinκx; t)e−x2

cosκx dx = √
πq

1
4 (m2+ 1

2 )(it)mεq2(−t2) (38)∫ ∞

−∞
εq(sinκx; t)εq(sinκx; τ)e−x2

cosκx dx = √
πq

1
8 eq2(−t2)eq2(−τ 2)Eq(−q

1
2 tτ ). (39)

We note in closing that the Fourier–Gauss transformation properties of the continuous
q-Hermite polynomials and the corresponding coherent states, discussed above, are closely
related to their convolution properties. We hope to discuss this question in detail elsewhere.
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